
Computer Science Journal of Moldova, vol.11, no.3(33), 2003

NeoSite: A simple Content Management

System

Oleg Burlaca

Abstract

This article describes NeoSite: a content management system
that facilitates clear separation between content, logic and design.
The system has a modular architecture and it’s user interface is
modeled (customized) using XML. The content is represented as
a tree, whose nodes are called “datacells”. The definition of a dat-
acell is composed from: a list of attributes, the relationship spec-
ification with other nodes, interface modeling instructions. The
system was conceived for web site implementation by program-
mers and information architects, after that, site maintenance is
shifted to content authors, managers, etc.

Keywords: content management system, user interface, xml,
usability.

1 Introduction

The activity of today’s organizations can’t be detached from infor-
mation technologies. Web sites are used to promote companies and
their products, offer services and information, facilitate communica-
tion. Web content needs to be managed quickly at a qualitative level.
The problem of content management automation has arised. There are
tools for creating web pages and even web sites, but it takes time to
learn how to use them.

The site designer should be freed from creation and maintenance of
HTML pages. When the site structure is settled down, page generation

c©2004 by O. Burlaca

188



NeoSite: A simple Content Management System

should be automated. The system will take care about page cross-link
validation in case of reorganization.

Most good ideas are easily understood. Usually they appear be-
cause of a need, and are accepted quickly. The delicate moment consti-
tutes the transition from conceptual acceptance to practical implemen-
tation. A Content Management System is a great idea, easily accepted,
but hard to accomplish.

There are a lot of perspectives on what “content management” re-
ally is [1]. Meta Group, for example, defines content management as
”. . . a complex blend of functionality, including the acquisition, man-
agement, assembly, review and approval, effective publishing, reten-
tion and security of information bound for any of an organization’s
. . . Internet, intranet, or extranet venues”. But analyst views are al-
ways to be taken with a grain of salt, as they are typically the result
of an individual analyst or two that is then influenced by the firm’s
marketing needs. These are specialized definitions that will fail to
encompass future CMS. In addition to this, substantial overlaps ex-
ist with document management systems, knowledge managements sys-
tems, enterprise application integration systems, e-commerce systems
and portals. A more abstract approach:

“A set of tasks and processes for managing content throughout its
life from creation to archive” [2]

“An emerging field that’s concerned with making information easier
to manage and access inside corporate environments” [3]

In reality a CMS is a concept rather than a product. It is a concept
that embraces a set of processes that will stay at the foundation of
the next generation of web sites where content authors will have more
privileges, duties and responsibility than designers and developers. The
main purpose of a CMS is: enhanced integration and automatization
of processes that contribute to efficient dissemination of information on
the Internet.

Despite a wide spectrum of CMS [4], there is no dominant pro-
prietary content management solution, especially for smaller sites. A

189



O. Burlaca

survey [5] conducted in January 2003, identified the major problems
when designing for or implementing content management software:

• commercial software too expensive and required too much time
to implement

• difficult to integrate with other systems

• determining requirements

• migrating old content

• training authors and editors

In fact, 61% of companies who have already deployed Web content
management software still rely on manual processes to update their
sites [6]. Users would like:

• Smaller and less complex systems

• Documentation should provide concrete ideas for how to structure
project and make maximum use of features

• Scalable user interface: features can be removed/added as re-
quired

• Better UI for content creation and management of workflow.

A CMS implementation will be a success only if it’s accepted by
content authors, designers, managers and administrators. Today’s re-
quirements comprise integration with other systems that means new
types of users. To be accepted, a system should offer a handy interface
for all of its users. This point of view is sustained by “Chaos Report”
[17] appeared in 1994, which concluded that the highest-ranking factor
contributing to failed system implementations is lack of user involve-
ment. Users care most about the interface. Developers tend to dedicate
most of the time to the technological aspects of the system and often
don’t take into account its future users. Shortly, they care about how
the system works, but not about those who’ll use it.

190



NeoSite: A simple Content Management System

2 Related Work

Tiramisu [7] is a declarative web site management system decoupled
from concrete implementation tools. The designer defines site structure
and content in a declarative way, after that, for each part of the site,
the implementation tools are specified. The longer term goal of the
project is to develop a federated architecture in which it is easy to
incorporate new web site development and management tools. A key
element of this architecture is the definition of a standard API to web-
site management tools. The federative architecture has similarities to
NeoSite GUI architecture based on modules that can interact with each
other. Thus, new modules can benefit from services offered by existing
ones.

Site Manager [8] is a 3D visualization tool for web sites. It displays
the entire hyperlink structure of your Web site in a three-dimensional
sphere that can be rotated and zoomed in/out to more closely examine
a specific document’s link hierarchy and still see how this ”close-up”
fits into the entire Web site.

XXL [9] – interactive development system for building user inter-
faces which is based on the concept of textual and visual equivalence.
The XXL Builder provides three views of the interfaces that are be-
ing developed: the text view, the graph view and the widget view.
The text view shows the corresponding descriptions in the source code.
The graph view is an iconic representation that is equivalent to the
text view. These two views constitute the dual (textual and visual)
”abstract” specification of the UI while the widget view can be seen as
the “result” of this specification.

Works mentioned above concentrates either on inner part (databases,
declarative languages for site structure specification) or on external as-
pects (information visualization, using XML in user interface design)
of development tools. The goal of the proposed system is to combine
these two aspects in order to obtain a flexible and usable system.

Twingle [10] - a tool for content authors to work with networked
information. The project is focused on improving three parts of the
content management experience: Locating, Creating, and Collaborat-

191



O. Burlaca

ing. Each of these will be simpler, faster, and more powerful for average
people that work with WCM (web content management) systems.

XcoP [11] - XML content repository based on an object-relational
databases management system and improves content management of
XML documents. Documents are called “fragments”. A fragment con-
sists of textual contents and may further comprise a set of other frag-
ments. Fragments are stored as table rows and could be processed
partially.

Newtenberg Engine [12] – a framework for modeling and generating
web sites based on “boxes”. A “box” is a way of describing a view over
one or more “eidox”. An “eidox” is the basic unit of content and is an
abstraction of a document that includes the content, its properties and
the generative history of the content.

XcoP’s Fragment, Newtenberg Engine’s Eidox and NeoSite’s data-
cell are basically the same thing – an atom of information that cannot
be splitted any more.

3 NeoSite overview

NeoSite is a client/server application that leverages content manage-
ment within a website. Is promotes a good structuring of information
and automates site maintenance. The system is designed for small to
medium organizations. Basically, its users will be content authors and
providers. If the information is well structured and has a high degree
of granularity, then HTML knowledge is not required.

The system is not an integrated and independent solution for web
site development, but rather a framework which is used to construct a
unique solution based on site’s specific requirements.

The system’s motto is: A flexible system based on plugins that
offers simple and usable interfaces for effective and efficient content
management.

192



NeoSite: A simple Content Management System

3.1 Important features

• Content management based on small, interconnected pieces of
information (content cells)

• A content cell is defined by it’s properties and it’s relationship
with other content cells

• High degree of cell interconnection

• Handy management (good interfaces) of information cells

• Doesn’t need special/external viewers and editors

• Separation between content, design and application logic

3.2 Technical aspects

All parts of the system, except client application, was implemented us-
ing free software. MySql was chosen as database server: connectivity,
speed and security has made MySql a standard de facto for web appli-
cations. Server side scripts and applications were written in Perl: the
most used language for CGI scripts. The web server, and it’s no sur-
prising, is Apache, because it’s free and is the most popular web server
today: a Netcraft survey (www.netcraft.com/survey) showed that it
runs on 55% of web servers. The client application was implemented
in Borland Delphi and runs on all Windows platforms (9x, NT, 2000,
XP).

3.3 Client application vs. Web interface

Web interfaces to content management systems are the most popu-
lar today. There advantages are: handiness and simplicity, there is
no need to install special software on the client side. However, web
browser interface elements and possibilities are limited, compared to
common applications. Web interfaces fail to offer a clear and intuitive
model for interacting with big volumes of information. In addition, an
interface must also operate well in adverse conditions (poor internet

193



O. Burlaca

connection, rapid transfer and complex data processing), that is a dif-
ficult achievable goal for such interfaces. The system is intended for a
high rate of editing, adding and interconnecting of information. These
activities require more rapid and democratic interfaces, that’s why a
client application is more desirable in this case.

3.4 From concept to implementation

Determined objectives could be achieved only through a scalable, flex-
ible and modular concept. From information structuring to some im-
plementations for dynamic page generation, every aspect influences the
accomplishment of a system that will be easy to support and develop
in the future. The more rigorous and, at the same time flexible, is
the initial concept the more smoothly will go future development. Ab-
stractions identified at the inception phase of the project are essential
in order to achieve a flexible system.

4 System architecture

The activity of most computer programs could be divided into three
phases: obtain initial data (input), process it (logic) and present the
result (output). These stages coincide with the layers from Model-
View-Controller (MVC) framework. The MVC paradigm originated in
the Smalltalk-80 system to promote a layered approach when develop-
ing graphical user interfaces. Today MVC is also used in structured
development of complex systems, particularly in web applications [13].

MVC is the central concept of NeoSite’s architecture that promotes
clear separation between data, presentation and logic. It becomes possi-
ble to separate in time and space the processes of content management,
template design and script development.

NeoSite’s components are: database, user interface, tools for au-
thoring, visualization and searching of content, templates, scripts for
processing, crunching and presentation the content using templates.

194



NeoSite: A simple Content Management System

The construction of a web site consists of:

• Selecting, integrating and management of data that are going to
be published on the site

• Work out the site structure: page types, information used on each
of these pages and links between them.

• Design the look of the site (art design)

4.1 A relational-hierarchical model for content manage-
ment

The organization of human brain is based on hierarchies. Information
that is categorized, classified, organized, presented to the user as a
hierarchy is understood more easily. In NeoSite, site content is repre-
sented as a tree, like in Windows Explorer. The proposed model has
the hypertext idea at its roots. W.Weiland and B.Shneiderman define
hypertext as a “technique for organizing textual information through
a complex non-linear method in order to facilitate rapid exploration
of a large quantity of knowledge”. The tree is stored in database as a
self-referenced table (see Figure 1).

A node represents an unitary piece of information and constitutes a
row in the database table. It can be said that in the tree, relations be-
tween the nodes are implicit: the parent-child relation. For specifying
explicit relationships a new table has introduced (see Figure 2).

It’s obvious that such a primitive approach is not suited for large
projects that abound in semi-structured information, where XML is ap-
propriate. The impact of XML on data storage and presentation gave
birth to XML native databases [14]. Sometimes, possibilities offered by
a DBMS, even XML native, aren’t sufficient for today needs. Today’s
market offers content management servers for XML document appli-
cations [15] and XML content repositories [11]. In [14] it is said that
“content management systems are specialized models of XML native
databases”, which is a narrow-minded approach in my humble opinion.

195



O. Burlaca

CREATE TABLE tree (
id mediumint unsigned NOT NULL auto increment, # node identifier
parent id mediumint(8) unsigned NOT NULL, # parent node identifier
tip tinyint unsigned NOT NULL, # node type
title varchar(255) NOT NULL, # title that appears in client application treeview
... user columns ..., # node attributes
modified timestamp(14) NOT NULL,
pos smallint unsigned NOT NULL, # node’s position relative to its siblings
total int(10) unsigned NOT NULL, # number of descendant nodes
PRIMARY KEY (id),
KEY parent id (parent id),
KEY tip (tip)
)

Figure 1. Table that holds the content of the site

CREATE TABLE tree related (
from id mediumint unsigned NOT NULL, # reference node id
to id mediumint unsigned NOT NULL, # referenced node id
... user columns ... # the specification of the relation
pos smallint unsigned NOT NULL, # position of the relation
PRIMARY KEY (from id, to id)
)

Figure 2. Table that holds explicit relations

The proposed model is very simple, but for small to medium
websites (www.patria.md, www.mavr.md, www.monument.md for ex.)
with highly structured information this works well.

4.2 Client application

The client application was implemented in Borland Delphi. Flexibil-
ity and reliableness are guaranteed by its modular architecture based
on plugins. Plugins can be developed in parallel by a group of pro-
grammers, which increase productivity and independence. A plugin
(module) performs a set of tasks and can request services from other
plugins. A plugin is simply a DLL library, loaded/unloaded by the
main program (i.e. the .exe file) when needed. All the functionality is
concentrated in plugins, the main program serves as a plugin modera-
tor.

196



NeoSite: A simple Content Management System

// user wants to edit a node (press F2 or double click the node)
Main LoadPlugin(’edGeneric’) the EdGeneric.npl library is loaded
SiteTree GetTipImg (7) get the glyph for the node with tip==7
TaskBar NewTask (EditorForm) add a button in the TaskBar
TaskBar ActivateForm (EditorForm)
EdGeneric Edit(881) editing the node with id==881

// user updates the node title and presses the ’Save’ button
TaskBar ChangeCaption (EditorForm, ’A Title’) update the the taskbar button
SiteTree OnItemSaved (881, ’New Title’) treeview are notified about changes

// building the node
Srv ReadCfg (’builder script’) which is the builder script ?
CGI Get(’id=881&tbl=site ro’) invoking the server script with GET method

// user closes the node editing window
EdGeneric Close
SiteTree OnItemClosed (881) node editing is over

Figure 3. The interaction between client application plugins

The core client plugins are:

• SiteTree, data tree management (visualization, updating). Note:
Tree nodes are fetched from db on request.

• Srv, a helper plugin which acts as a service provider

• EdGeneric, manages a “data cell”, i.e. a single node from the
SiteTree plugin

• CGI, offers services for interacting with the web server (export
commands for invoking server scripts)

• SQL, executes sql queries and show results in a grid. It is used
mainly by administrators.

• TmplTree, template management

Figure 3 shows the sequence of events/actions generated on editing,
saving and building a data cell.

197



O. Burlaca

4.3 Templates

Templates are document “skeletons” that describes the structure of a
page (or a set of pages). The template defines when and where the
content should be presented. Templates are stored in the database and
managed from the client application.

A web page can be generated from several templates, and vice versa,
a template can generate a set of pages. A template can process itself
recursively to build a hierarchical structure for example.

Templates are processed on the server side using the Template
Toolkit [16] - a collection of open source perl modules, which collec-
tively implement a flexible and powerful template processing system,
designed for constructing presentation elements and formatting data.

An alternative for Template Toolkit would be the XSLT, XML, CSS
combination. Despite their popularity, using these standards is not an
easy task. Nevertheless, XML and XSLT can be used in Template
Toolkit through a set of modules.

4.4 Scripts

Web pages are generated by server side scripts. The script’s work
usually goes through the following set of stages:

• information extraction from databases

• preprocessing obtained data

• dispatching data to templates for page generation

Dynamic pages are generated implicitly; the static ones are gener-
ated explicitly by calling the builder script from the client application.
Script functionality can be splitted into several modules, plugged in by
templates on request (see Figure 4).

198



NeoSite: A simple Content Management System

Figure 4. Server side implementation

5 DataCell

Content tree nodes are called ‘datacells’ (information cells). A cell
represents a unique concept that has some textual information and a
set of proprieties. The most important propriety of a cell is it’s type.
The cell type definition (see Figure 5) describes how a node will be
displayed (icon, font, tab sheets), which db fields are used, and how
this type of node relates to other types.

The key elements from the type definition are:

• linkage, fields from the tree related database table used for de-
scribing the relation between two nodes

• memos, textual fields that require specialized editors with syn-
tax highlighting

• fields, fields from the tree table: node proprieties

199



O. Burlaca

Figure 5. The definition of cell type

200



NeoSite: A simple Content Management System

The most challenging part in the design of a web site using NeoSite
is partitioning the content into datacells. Because this process is influ-
enced by a lot of factors that sometimes are contradictious: granularity,
dependencies, flexibility, scalability, performance, evolution, reusability
degree.

6 User interface

Human-computer interaction is achieved through interfaces. The more
the interface is designed the more the user is satisfied. When an in-
terface is well designed, the time needed to access the information de-
creases, and the user adapts much more quickly with the software.

A CMS implementation will be successfully only if: 1. is accepted
by content authors; 2. web site users are satisfied. That’s why usability
is a key factor. Usability is a science and art of designing interactive
systems that are: easy to learn, efficient in utilization, flexible, stable.

Some elements and aspects of the client application user interface
are modeled through a set of XML documents stored in the database.
In Figure 6, the ‘MONUMENT.MD’ subitem is added to the ‘View’
menu item. When clicked, the ‘SiteTree.npl’ plugin is loaded with the
specified parameters from <params> section.

Figure 6. Modelling the interface using XML

201



O. Burlaca

Figure 7. Client application user interface

202



NeoSite: A simple Content Management System

Figure 8. Node relationship management

A special attention was devoted to content authoring tools. In spite
of its usability, WYSIWIG (What You See Is What You Get) editors
weren’t used because it doesn’t allow advanced HTML programming,
and the produced source code a larger that usual because of needless
specifications.

The relationship between nodes are established using a drag& drop
operation: the referred node is dragged to the ‘Related To’ section from
the node editing window (see Figure 8).

The interface for editing node properties is built based on the
<fields> section from the node type definition. This section specifies
the editors (ComboList, ImageEditor, NumericEditor) used for updat-
ing the fields. In Figure 9 you can see that the ‘semnificatie’ property
is edited using a ComboList editor.

203



O. Burlaca

Figure 9. Editing datacell properties

7 Conclusions

Effective web site content management can be done using relatively
simple instruments and limited resources. This article introduces
NeoSite: a content management system for small to medium websites.

Comparing to other CMS’s, NeoSite misses features like versioning
or workflow support for now. Our system will never beat a commercial
solution like Microsoft CMS because of limited human, time and finan-
cial resources. This system is more like a test platform for methods and
ideas that, in my opinion, could enhance cms usability by providing a
crystal-clear model for managing the content. When we developed this
system and used it to implement a series of web sites we asked ourselves
why such a simple approach, based on a tree with explicit node rela-
tionship, is so effective. We realized that, involuntary, We’ve used the
hypertext paradigm and applied it to the problem of data management
(adding, updating). The question now is: can this model be further
enhanced to leverage the processes of adding, updating, relating the
content?

Meanwhile, we should keep an eye on today trends in cms field. It’s
important to mention that the primary use of computing technology
continues to evolve to be more for communication than for data crunch-

204



NeoSite: A simple Content Management System

ing [18]. Communication means lots of users (humans and software)
with its own specific needs. It’s obvious that custom development +
mission critical = expensive [18]. Vendors will have to expand their
solutions to maintain business models that require large sales. Open
Source software will surely influence the evolution of enterprise content
management. Compelling evidence in this direction is the advent of
the Zope CMS [19] - one of the leading open-source Web application
servers and content management systems. Zope has won many con-
verts in the last two years, and a vibrant development community has
developed all over the world.

The purpose of an information system is: 1. satisfied clients 2.
users acceptance.

Successful implementation of web sites showed that the NeoSite
system accomplishes its objectives.

8 Future Work

NeoSite stores and displays data as a tree. If there are a large volume of
content (the tree has a lot of nodes), a single method for data manage-
ment becomes inconvenient. The system has to offer complementary
tools for data visualization and editing. In other words, it would be
appropriate to have more perspectives on the same content.

The system was conceived to be used by people. In the future,
content providers could become: other CMS’s, intelligent agents, email
system etc. The system will be administrated directly: by users, and
indirectly: by other software through a communication protocol.

References

[1] What is Content Management, The Gilbane Report, Vol. 8, No.
8, October 2000. www.gilbane.com

[2] Ovum, http://www.ovum.com/

205



O. Burlaca

[3] Louis Rosenfeld, Content Management and Information Architec-
ture, CMS Watch, http://www.cmswatch.com/

[4] Paul Browning, Mike Lowndes. JISC TechWatch Report: Content
Management Systems, September 2001

[5] The Problems with CMS, The Asilomar In-
stitute for Information Architecture (AIfIA),
http://aifia.org/pg/the problems with cms.php

[6] ”Web Content Management: Covering the Essen-
tials, Avoiding Overspending”, Jupiter Research 2003,
http://www.jupiterresearch.com

[7] C.Anderson, A. Levy, Declarative web-site management with
Tiramisu, ACM International Workshop on the Web and
Databases (WebDB’99), June 1999

[8] Site Manager - Software for Web Publishing and Site Manage-
ment, http://www.sgi.com/software/sitemgr.html

[9] Eric Lecolinet, XXL: A Dual Approach for Building User Inter-
faces, ACM Symposium on User Interface Software and Technol-
ogy 1996. http://www.inf.enst.fr/∼elc/XXL/index.html

[10] Twingle - a tool for content authors to work with networked infor-
mation, OSCOM http://www.oscom.org/Projects/Twingle

[11] B. Surjanto, N. Ritter, H. Loeser, XML Content Management
based on Object-Relational Database Technology, Web Information
Systems Engineering 2000

[12] Carlos Castillo, A Framework for the design and im-
plementation on web sites, IADIS WWW/Internet 2002,
http://citeseer.nj.nec.com/castillo02framework.html

[13] Alan Knight, Naci Dai. Objects and the Web. IEEE Software,
March/April 2002.

206



NeoSite: A simple Content Management System

[14] Ronald Bourret, XML and Databases,
http://www.rpbourret.com/xml/XMLAndDatabases.htm

[15] T. Arnold-Moore, M. Fuller, Architecture of a Content Man-
agement Server for XML Document Applications, Web Informa-
tion Systems Engineering 2000, http://citeseer.nj.nec.com/arnold-
moore00architecture.html

[16] Andy Wardley, Building and Managing Web Sites with
the Template Toolkit, Canon Research Centre Europe Ltd.,
http://template-toolkit.org/tpc4/

[17] The Standish Group, The CHAOS Report,
http://www.standishgroup.com/sample research/chaos 1994 1.php

[18] The top 10 trends in content management, The Gilbane Report,
Vol. 10, No. 4, October 2002. www.gilbane.com

[19] Zope CMS, www.zope.org

207


