
Abstract: This paper discusses a generic user interface for
managing web data that is incorporated in a content
management system. The interface is created at run-time from
a set of xml documents stored in database. We accentuate the
importance of content analysis phase that leads to a well
formed data model. Another important aspect is the use of
context in the interface and the hierarchical model to represent
multiple relationships between hierarchy items. The proposed
event model acts like a glue between data management and
application logic.

Keywords: User Interface, Database Access, Conceptual
Modeling, Content Management System, XML.

1. INTRODUCTION

Significant research have addressed the conceptual
modeling [1] and declarative specification [2] of data-
intensive websites. Frameworks and paradigms are proposed
to built websites from data sources with complex structure,
but do not offer means or propose methodologies for
managing the underlying data. In other words, there is a lack
of tools that offer generic interfaces for managing
intertwined(complex) data structures.
 The main motivation for this work is NeoSite
(http://baraka.neonet.md) a CMS developed by the author
for structured web sites. Constantly been improved, it has
been in use for the last three years to manage web sites of
different complexity.
 After the content analysis phase, we try to represent the
data of a web site using a lightweight version of the entity
relationship model introduced by Chen [3].
 This article is structured as follows. The next section
describes what incited us to develop a CMS that offers a
generic interface. Section 3 explains why the content
analysis phase is so important when developing structured
web sites. Section 4 highlights some advantages of generic
UI, describes some of the problems with web interfaces,
reveals our approach to building generic interfaces, and
accentuate on relationship and multirelations between
entities. A brief outline of the event model that allows to tie
the interface to application logic is provided in Section 5.
Section 6 gives an overview of related research and tools.

2. HISTORICAL BACKGROUND
Back in 2000, the author entered the web development
arena. His duty was to create scripts for web site generation
from a set of templates and the data stored in a RDBMS. But
someone should somehow, feed the site’s data to the
database. The most tedious and time consuming task was to
develop handy user interfaces (UI) for content authors. Most
database systems (we used MySql) contains rudimentary
tools for manipulating and querying the data, that are usually
insufficient for most users. For this reason, a customized UI

to handle interaction between the user and the database was
required for each web project.
 As the number of web projects grew up, there was an
urgent need for a Content Management System (CMS).
Using our experience of creating tools for web site
management, we started to build our own CMS that will
encompass the most needed and reusable components. From
our point of view, as developers, at that time, a CMS that
offers a tight integration of WWW, DB and FTP services
would be sufficient. From a content author and designer
perspective, a CMS is a system that enables him to
effectively and comfortably publish his content, change the
design of the site, notify other CMS users, generate some
reports for the administrative staff, etc.
 In reality a CMS is a concept rather than a product. It is a
concept that embraces a set of processes that will stay at the
foundation of the next generation of web sites where content
authors will have more privileges, duties and responsibility
than designers and developers.
 As we mentioned, developing custom UI was (besides
information architecture process and conceptual modeling)
the most time consuming stage. The two key factors were:
1) complexity and uniqueness of UI being developed 2) the
ever changing requirements of web projects (a new field was
added to a DB table, the nature (attribute list) of a relation
between entities has changed). We desperately needed a
high level interface to database; a system that will generate a
UI from a set of rules: which fields should be available to
the user, how relations are created between records etc. In
other words, a generic UI to relational DB systems was
needed.
 We propose such a generic UI engine, implemented in our
NeoSite CMS [4]. NeoSite is a web development
environment where the data management facilities plays a
central role. The system responsibility is how content are
managed (created, updated, related) but not how it is used.

3. CONTENT ANALYSIS
To make a successful CMS for a particular web project, a

research phase for content analysis is needed. It helps you
reveal patterns and relationships within content and
metadata that can be used to better structure, organize, and
provide access to that content. The purpose of content
analysis is to provide data that’s critical to the development
of a solid information architecture [5] .
 In this work we are mainly concerned with UI to
structured web data. Examples of such sites are bookstores,
electronic catalogs, e-news. These are sites that include
pages composed of data whose overall structure is naturally
hierarchical, but exhibits a modest degree of variation. In [6]
such pages are called “data rich, ontological narrow,
multiple-record web pages”. Such sites are composed of
index and entity pages. Index pages will be automatically
generated from entity(leaf) pages. An entity page consists of
1. internal content: it mainly appears on this page (a long

Generic Interfaces for Managing Web Data
Oleg Burlaca, Institute of Mathematics and Computer Science

text, a xml description of a product) 2. external content:
attributes that are used to construct index pages, feed search
engines. 3. relationships with other entity pages and the
specification (attributes) of those relations.
 Defining entity types, their relationships and organizing
entity collections into a hierarchy that mimics the site
structure is a creative process and requires information
architects intuition, programmers point of view and
customer involvement. After this work is carried out, a
XML specification of the UI is elaborated and fed to
NeoSite generic UI engine.
 Hierarchy is ubiquitous in our lives, because of its
pervasiveness, users can easily understand web sites that use
hierarchical organization models. They are able to develop a
mental model of the site’s structure and their location within
that structure. This provides context that helps users feel
comfortable.

4. GENERIC USER INTERFACES
Within the lifecycle of a software project there are often

many changes required to the initial design as it progresses,
and the developer’s software tools are not able to easily cope
with these changes. The UI needs to interact with the
database and is sensitive to any changes occurred in the
database. Such changes will cause the UI to stop working
unless the same changes are also applied to the UI.
Furthermore, the results of major changes to the underlying
database and user interface may require substantial re-
testing of the application.
 The users desire to view a multitude of data on a single
complex screen is usually indulged by the developer even
though this may not be desirable. Such complex screens are
not scalable and difficult to change.
 When developing a database system there are well-
established rules of how data should be stored and accessed
called Relational Database Theory. “form relieves” said
Michelangelo. What if there will be a UI theory with strict
rules ? Maybe then, interfaces will be simpler and more
consistent than a traditional application, but able to provide
much more powerful functionality ? A few obvious
advantages of a generic interface are: reduced development
time, scalability, no hand coding, less testing, consistent
look and feel, standardization, less training.

4.1. CLIENT APPLICATION VS. WEB INTERFACE
Almost all commercial CMSs uses a web interface to

interact with the user. The central argument is that you don’t
have to install special software on the client side. You can
administer the site from any computer connected to the
Internet that have a web browser installed. However,
browser interface controls have limited functionality,
compared to desktop applications. But the main problem is
the stateless editing. HTTP is a stateless protocol and
doesn’t support stateful interaction with a server. This
problem can partially be solved by using a mix of cookies
and server sessions imposed over the protocol, but in
general, editing content in a web browser is not so pleasant
nowadays. The problem becomes even worse when you
have to edit a large collection of entities. For example, ERW
– a system for handling complex databases through a web
browser [7], “solves” this issue by “simulating remote
procedure calls”. However, their todo list tells that the

system will be redesigned from scratch; the first step in this
direction is the creation of a working, independent
framework for asynchronous remote-script callback
invocation.
 As you have probably guessed, we are using a client
application for managing the site’s data. Besides installation
issues (each user has to install the software on his machine),
there are a lot of “plusses” that are evident when the site is
managed by a few number of users.

4.2. THE HIERARCHY
After the content analysis phase, the identified entity

types of the future web site will be hierarchically organized
and presented to the user as a treeview. The hierarchy
provides user with a decent navigation system, that
simplifies the UI by minimizing the number of facilities
used to find information. At the same time, the user will
always have a clear understanding of his location within that
structure due to bread-crumbs. In other words, the hierarchy
provides context. Another feature is the implicit relationship
(parent-child) between nodes. Instead of displaying a grid
with two columns: 1. product title, 2. category of the
product, sometimes a tree with two levels: category as
parent with products as children is more appropriate.
 However, hierarchies can be limiting from a navigation
perspective. You are forced to move up and down and can’t
jump across branches (lateral navigation) or between
multiple levels (vertical navigation). Additionally, some
tasks, like editing multiple records with a single operation,
will be inconvenient and time consuming when the
hierarchy. Shortly, we must have the possibility to view the
data from any angle. We tried to address this issue by
introducing a special type of entity called “Data shortcut”
described in 4.4.

4.3. ENTITY TYPES
Entity type definitions are a set of xml documents that

describes: 1) how an entity will be displayed in the treeview
(icon, font); the associated editor plugin 2) which database
fields are available, and which editors to use for them 3)
which entity types can be related to each other and which
attributes describes those relations. 4) triggered events and
available actions when working with an entity.
 [Fig. 1] illustrates a snippet from the XML definition of
an entity type that represents the db fields displayed. [Fig. 2]
shows the generated UI.
 Database fields that contain large texts and require
specialized editors with syntax highlighting are described in
the <memos> .. </memos> section.
 Besides standard visual editors (ComboBox, CheckBox,
DateEdit, TimeEdit…) available in the previous version of
NeoSite [4], we have added two useful complex editors:
Lookup and ImgEdit. The ImgEdit allows you to browse for
an image on your computer for uploading via FTP. The
uploading directory from the remote server can be obtained
by invoking a server side script with the id of the item
being edited. The resulting text written to db field is
obtained by filling a template like “<img width="%w"
height="%h" src="%src" alt="%filename"/>”.

<f name="producer_id" editor="Lookup">
<sql>SELECT id, title FROM site_en

 WHERE parent_id=5 ORDER BY title
 </sql>
 <columns show_header=”1”>
 <col name="title" caption="" />
 <col name="tel" caption="Phone" width="60" fixed="1" />

</columns>
</f>

Figure 1: A snippet from the XML definition of an entity

Figure 2: A piece of UI for db field editing

Figure 3: Definition of a lookup db field

Such automatizations helps a lot when dealing with lots of
images. It also relieves the burden from content authors.
The Lookup editor display dataset records within a
dropdown window in a column-based format. These records
are fetched based on a SQL Select. [Fig. 3] illustrates the
definition of a lookup db field.
NeoSite has a modular architercture based on plugins. A
plugin is a DLL library. Each entity type can have it’s own
plugin for editing.

4.4. DATA SHORTCUTS
It has been said that hierarchies can be limiting from a

navigation perspective and have the possibility to view the
data from any angle. For this reason, a special editor plugin
was developed, called EdSql. It fetches a collection
(described by a sql query) of entities from the hierarchy and
has two purposes: 1) additional navigation pathway 2)
editing multiple records with a single operation. [Fig. 4]
 When double-clicking the ‘ShortCut’ node, a grid is
displayed containing live data, the user can use grid inplace
editing or press ‘Ctrl+Enter’ to find&focus the selected item
in the hierarchy.

Figure 4: Data Shortcuts

4.5. RELATIONSHIPS
The basic idea of Entity-Relationship modeling,

introduced by Chen[3], is that using sets and relations we
can model objects of the real world and their inter-
relationships.
 At first, when designing the database structure for a
website, adjusting it to a relational normal form was a
priority. In practice the theoretical model is often
constrained by the way in which the data will be used and
speed of access; compromises are introduced into the
design.
 Today we try to model site’s data using only hierarchies
and relations between hierarchy nodes. It greatly reduces
and simplifies the user interface. Instead of providing a
highly customized interface, we separate complex items into
smaller parts, meaningfully organized in the hierarchy. If the
context provided by the hierarchy is not sufficient to express
the meaning of an item collection, explicit relations and

…
<memos>
 <f>
 <title> content </title> <lang>en</lang>
 <db_field> content </db_field>
 </f>
</memos>
<fields>
 <f name="thumb" editor="ImgEdit" />
 <category caption="Title" />
 <f name="title_en" caption="En" />
 <f name="title_ro" caption="Ro" />
 <category caption="Brief" />
 <f name="brief_en" editor="Memo" caption="En" height="50" />
 <f name="brief_ro" editor="Memo" caption="Ro" height="50" />

<category caption="Perioada" />
 <multieditor fixed="0" />
 <f name="date1" caption="Start">
 <default>NOW()</default>
 </f>
 <f name="date2" caption="End">
 <default>NOW()</default>
 </f>
 <multieditor />

<multieditor fixed="0" />
 <f name="ora1" caption="Ora1" editor="Time">
 <options format="HourMin" />
 </f>
 <f name="ora2" caption="Ora2" editor="Time">
 <options format="HourMin" />
 </f>
 <multieditor />
…

relationship attributes are additionally used to incorporate
more “data semantics”.
 Relations are defined using drag&drop operations.

4.6. MULTIPLE RELATIONSHIP
Two entities can be related “more than once”. For

instance, if a set of entertainment places are given, a place
‘x’ can be related to place ‘y’ two times: the first relation
means that ‘x’ is near ‘y’ and the attribute of this relation is
the distance in meters between them. The second one means
that ‘x’ and ‘y’ are similar (ambiance, age targeting).
 To store and display relations, the hierarchy model was
used again: in order to relate an item multiple times, you’ll
have to drag&drop it to different parent nodes [Fig. 5].
(Notice the ‘Arcada’ place). ‘Nearby places’ and ‘Related
places’ items are abstract entities, automatically related to
entities of ‘place’ type on their creation. Besides allowing
multirelations, these abstract entities provides context,
helping the user to better understand what a given relation
means.

Figure 5: Hierarchical multirelation management

Previous version of NeoSite [4] was able to deal only with
single relations, but allowed the user to manage backward
references. The practice showed that backward references
are seldom used and only bothers the user with additional
information.

5. TALKING TO THE LOGIC
A generic solution will offer only basic functionality. The

attempt to endow it with complex features that will
encompass a large spectrum of tasks will end up in a flexible
(maybe) but hardly manageable software creature. A generic
framework should “connect”, not “implement” project
specific or narrow features. To accomplish this objective,
NeoSite offers a high level event and action mechanism. As
we have mentioned in Section 4.3, an entity definition
contains the description of it’s events [Fig. 6] and actions.
 Entity action definition are similar to events. Actions are
directly activated by the user through a run-time generated
toolbar. Each of it’s buttons have an associated action.
Buttons may have an icon specified in the entity definition.
 Events a processed consecutively, the output of an event
is one of the input parameters of the next event. This model
adds workflow capabilities to our system.

Figure 6: Entity events

6. RELATED RESEARCH AND TOOLS
A generic query tool [8] that dynamically creates its user

interface, based on xml configuration files, enables the user
to query a metadata store through filters that impose search
criteria on attributes. It can be seen as a complementary tool
for NeoSite CMS, that shares the same metadata scheme
described in a xml file.
 Discovering a generic paradigm to manage complex data
is a challenging task. The QSByE [6] interface for querying
semistructured data allows representing complex objects
with arbitrary hierarchy levels, presenting variations in their
structure, as nested tables. Such approach can be used to
provide an insight of a complex structure, but is not
appropriate to edit it.
 The Arepo Platform [9] is a set of development tools,
used to generate a user interface directly from the database
and supplementary metadata. Playing with the online demo,
and investigating the docs on their site, we didn’t find a way
to specify relationships between records.
 The closest approach to our tool is ERW [7]: a set of
specifications and tools that makes it easy to create, modify
and maintain via web a database described by an entity-
relationship schema. It has a stable entity-relationship
language (ERL) and the associated algorithm. ERW has a
well established theoretical foundation, but provides a
modest interface to the underlying gears. Because they use a
web interface, it makes impracticable to edit large databases.
A common “limitation” of both tools: ERW and NeoSite, is
that it handles binary relations only. If you really need n-ary
relations, you’ll have to factor them. The main reason for
this limitation is that it is very difficult to device a generic
user interface for n-ary relations that will adapt to every
situation.

7. CONCLUSIONS
This paper has discussed a hierarchical approach to

manage entity multirelations in an intuitively clear and
convenient way. It also proposed the “Data Shortcut”
paradigm as a facility for navigation deep hierarchies and
view data from different angles.
 Even the grandest project depends on the success of the
smallest components. Web projects that were implemented

<events>
<OnCreate>

 <e type="sql">INSERT INTO site_en_related (from_id, to_id,
from_tip, to_tip) VALUES ($id, 444, 10, 1)</e>

<e type="http">
 <params>
 <url>http://neonet.md/cgi/build.cgi</url>
 <prms>id=$id</prms>
 <urgent>0</urgent>
 <method>get</method>
 </params>
 </e>
 </OnCreate>

<OnCloseAfterCreate> … </OnCloseAfterCreate>
 <OnOpen> … </OnOpen>
 <OnRelateNode> … </OnRelateNode>
 …
</events>

using the proposed approach and software (NeoSite CMS
[4]) demonstrate the effectiveness of the proposed model for
managing web data.
 As future work, we intend to investigate how to build an
interface for managing n-ary relationship.

REFERENCES
[1] Stefano Ceri, Piero Fraternali, Maristella Mareta. “Conceptual

Modeling of Data-Intensive Web Applications”, IEEE Internet
Computing, August 2002, pag. 20-30

[2] Mary F. Fernandez, Daniela Florescu, Jaewoo Kang, Alon Y. Levy,
Dan Suciu. “Catching the Boat with Strudel: Experiences with a Web-
Site Management System”, SIGMOD Conference 1998: pp. 414-425

[3] P.P. Chen. The entity-relationship model: towards a unified view of
data”, ACM Trans, on Database Systems, 1(1), 1996, pp. 9-36

[4] Oleg Burlaca, “NeoSite: A Simple Content Management System”,
Computer Science Journal of Moldova, vol.12, no.1(34), 2004,
http://baraka.neonet.md

[5] Louis Rosenfeld, Peter Morville, “Information Architecture for the
World Wide Web: Designing Large-Scale Web Sites” (Book),
O'Reilly, 2 edition, August, 2002. Chapter 10.4.2.

[6] Irna M.R. Evangelista Filha, Altigran S. da Silva, Alberto H. F.
Laender, David W. Embley “Using Nested Tables for Representing
and Querying Semistructured Web Data”, Springer-Verlag, 2002.

[7] Sebastiano Vigna. “ERW: Entities and relationships on the web”,
Poster Proc. of Eleventh International World Wide Web Conference,
Honolulu, USA, 2002. http://vigna.dsi.unimi.it/

[8] B. Verhoeven, E. Duval, H. Olivie, “A Generic Metadata Query
Tool”, WebNet, pp. 1122 - 1127

[9] Arepo Solutions Ltd, http://www.arepo.com

